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We investigate various competing paramagnetic ground states of the Heisenberg antiferromagnet on the
two-dimensional star lattice which exhibits geometric frustration. Using slave particle mean-field theory com-
bined with a projective symmetry group analysis, we examine a variety of candidate spin liquid states on this
lattice, including chiral spin liquids, spin liquids with Fermi surfaces of spinons, and nematic spin liquids
which break lattice rotational symmetry. Motivated by connection to large-N SU(N) theory as well as numeri-
cal exact diagonalization studies, we also examine various valence-bond solid (VBS) states on this lattice.
Based on a study of energetics using Gutzwiller projected states, we find that a fully gapped spin liquid state
is the lowest-energy spin liquid candidate for this model. We also find from a study of energetics using
Gutzwiller projected wave functions and bond operator approaches that this spin liquid is unstable toward two
different VBS states—a VBS state which respects all the Hamiltonian symmetries and a VBS state which
exhibits 3 X 3 order—depending on the ratio of the Heisenberg exchange couplings on the two inequivalent
bonds of the lattice. We compute the triplon dispersion in both VBS states within the bond operator approach

and discuss possible implications of our work for future experiments on candidate materials.
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I. INTRODUCTION

In recent years, several geometrically frustrated spin-1/2
magnets have been synthesized which appear to not order
magnetically even at temperatures well below the character-
istic exchange couplings. Among these are the quasi-two-
dimensional (2D) triangular organic material
k-BEDT(CN),,! the kagome lattice herbertsmithite> and dis-
torted kagome lattice volborthite,® and the three-dimensional
hyperkagome lattice magnet* Na,Ir;Og. A large class of these
magnets appear to exhibit gapless spin liquid behavior down
to very low temperatures, leading to the exciting possibility
that they may possess exotic ground states with fractional-
ized excitations.>”'* Others among these have been proposed
to weakly order into singlet valence-bond solid (VBS) states
which break lattice symmetries.'*"!7 As yet, there is no clear
picture of what combination of geometric effects and spin
interactions will lead to spin liquid ground states or VBS
ground states; this necessitates a theoretical and experimental
exploration of various new lattice geometries as well as pos-
sible ring-exchange interactions beyond the simplest Heisen-
berg spin-exchange interaction.

In this paper, we focus on understanding several compet-
ing ground states of the nearest-neighbor S=1/2 Heisenberg
model

szji,jsi'sj’ (1)
(i.j)

on the 2D star lattice, shown in Fig. 1, as a function of J,/J,
where J; and J, are the exchange couplings on the “triangle
bonds” and “expanded bonds.” Our motivation for this paper
is twofold. First, the recent synthesis of a “star lattice” or-
ganic iron acetate quantum magnet'® raises the possibility
that a S=1/2 variant may possibly be synthesized in the near
future and our results should be applicable to such systems.
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Second, this lattice has a sufficiently different geometry from
more commonly studied quantum magnets—it may be
viewed either as a variant of the kagome lattice or as a deco-
rated honeycomb lattice—which allows us to explore the ef-
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FIG. 1. (Color online) Top: structure of the star lattice depicting
the six-site unit cell, the chosen lattice basis vectors a;=2X and
a,=X+13¥, and the bonds with Heisenberg exchange couplings J,
(expanded bonds) and J, (triangle bonds). Bottom: phase diagram of
the antiferromagnetic Heisenberg model on the star lattice. For
J,/J,<1, the ground state is a valence-bond solid (VBS) phase
(J,-dimer VBS) in which every dimer sits on the expanded links
connecting neighboring triangles. For J,/J,> 1, the ground state is a
VBS with an 18-site unit cell (the columnar 18-site VBS).
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fect of this lattice geometry on possible spin liquid physics
and valence-bond solid phases in quasi-2D systems. Recent
studies of various model Hamiltonians on the star lattice'*-2!
demonstrate that quantum phases on the star lattice have
unique characteristics distinct from the properties of the
phases on the honeycomb or kagome lattices.

Motivated by interpolating between this spin-1/2 SU(2)
model and an SU(N) generalization at large N which permits
a mean-field solution with fermionic spinon excitations,?>4
we examine a large number of interesting U(1) spin liquids
as candidate ground states of the nearest-neighbor S=1/2
Heisenberg model on the 2D star lattice. Guided by earlier
work on the kagome lattice,” we focus on spin liquid states
denoted by SL[®, Dy, P ypeca00n] Where Pp, Py, and
@ jodecagon denote, respectively, the “fictitious” fluxes seen by
the fermionic spinons as they move around an elementary
plaquette of the lattice: an up triangular plaquette A, a down
triangular plaquette V, or the 12-site dodecagon plaquette. In
terms of the original spin variable, the fluxes on the triangu-
lar plaquettes correspond to scalar spin chiralities of the form
S-S, XS5, while @4, 40cqq0n 18 Telated to an operator defined
by the 12 spins around the dodecagon loop. Depending on
the flux values, these spin liquids represent gapped chiral
spin liquids which break time-reversal symmetry? or states
with gapless Fermi surfaces of spinons or gapped spin lig-
uids with no broken symmetries.

From a study of energetics of various flux values using
Gutzwiller projected wave-function numerics for the physi-
cal case of N=2, we show that a particular gapped spin lig-
uid, which we denote as SL[0,0, 7], which does not break
lattice or time-reversal symmetries emerges as a favorable
candidate over a wide range of J,/J,. This is in striking con-
trast to earlier work on the kagome lattice from two perspec-
tives. First, as we show, the effect of projection is far more
dramatic on the star lattice when compared with the kagome
lattice; a numerical Gutzwiller projection of the mean-field
states leads to a complete reordering of the energies of the
candidate spin liquids. Second, unlike the kagome lattice
case where the lowest-energy variational state of this form is
a spin liquid with massless Dirac fermion excitations,’ the
SL[0,0, 7] is a gapped U(1) spin liquid—we therefore know
that it is ultimately unstable toward spinon confinement at
low energies?® unlike the Dirac fermion states whose stabil-
ity depends on the number of fermion flavors N.?’

We find that the SL[0,0, ] state naturally forms strong
dimers on the expanded bonds for small values of J,/J, thus
leading to a confined state, a J,- dimer VBS, which respects
all symmetries of the Hamiltonian.?® For large J,/J,, numeri-
cal exact diagonalization (ED) studies of this model carried
out in a restricted nearest-neighbor dimer basis showed sig-
natures of \3 X 3 ordering.2’ We argue that another motiva-
tion to study possible dimer orders that break lattice symme-
tries is that such ordering often appear quite naturally in the
large-N fermionic SU(N) theory as recognized in the early
work of Affleck and Marston'4?3 and shown in various other
models studied recently.’*3? Inspired by these results, we
consider various candidate VBS phases from different
perspectives—a large-N route, a bond operator formalism,
and Gutzwiller projected wave-gmctign numerics. All of
these points to a transition to a y3 X y3 ordered VBS phase
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for large enough J,/J,=2-2.5, leading us to the phase dia-
gram shown in Fig. 1. Our result is in broad agreement with
the ED study although the transition point estimated from
our work is somewhat larger than the ED result which yields
(J,/J,) i = 1.3; the ED result may, however, may suffer from
significant finite-size effects. We then discuss possible routes
by which the SL[0,0, 77] state might be unstable toward such
V3 X V3 VBS order instead of the J,~dimer VBS. We present
results for the triplon dispersion in both VBS states which
can be tested in inelastic neutron-scattering experiments on
candidate materials.

Finally, although the various other interesting spin liquids
we study do not appear to be energetically viable ground
states for the nearest-neighbor Heisenberg model on the star
lattice, they have energies which are close to the ground
state. They might thus be stabilized as ground states by small
changes in the Hamiltonian, such as further neighbor ex-
change or spin-phonon coupling or they might be relevant to
understanding the intermediate energy scale properties or fi-
nite temperature physics of materials which realize this
model. We therefore elucidate some of the properties of these
spin liquid states.

This paper is organized as follows. We begin, in Sec. II by
formulating the mean-field theory of the Heisenberg model
on this lattice in a slave particle description using fermionic
spinons which we relate to a large-N SU(N) approach. Based
on this, we classify and study the physical properties of a
number of candidate spin liquid Ansdtze. We next turn, in
Sec. III, to a study of dimerized states on_this _lattice and
present a group theoretic classification of \3 X \3 orders as
well as a large-N justification of specific candidate VBS
phases. Section IV contains a discussion of the energetics of
various spin liquid states using mean-field theory as well as a
Gutzwiller projected wave-function study and bond operator
approaches of candidate VBS phases. Section V discusses
the various ways in which the SL[0,0, 7] state, which is the
lowest-energy spin liquid state, might be unstable toward
VBS ordering as a result of spinon interactions and from a
Gutzwiller wave-function approach. The phase transition be-
tween VBS phases is described in Sec. VI. Section VII con-
tains a discussion of the triplon dispersion in both VBS states
which we think are realized in this model. We conclude with
a discussion about experimental implications in Sec. VIII.
Details of various calculations are contained in Appendixes
A and C.

II. SPIN LIQUID PHASES ON THE STAR LATTICE

A. Formulation of the mean-field theory

We investigate the ground state of the nearest-neighbor
S=1/2 Heisenberg antiferromagnet on the star lattice, which
is described in Eq. (1). Natural description of this lattice
system requires the consideration of two inequivalent links,
that is, one link lying on a triangle (a triangular link) and the
other link connecting two neighboring triangles (an ex-
panded link). We assign two different exchange couplings J,
and J, on expanded and triangular links, respectively. We can
also label a site i by pairs (R,n), where R denotes the loca-
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tion of a unit cell and n labels the six sites inside a single unit
cell (see Fig. 1).

To construct spin liquid states we introduce the fermionic
spinon operators, f,; (6=1 or |) to represent the spin opera-
tor;

1

se=
2

E flT,O'lo-gl,a 0,0y (a=x,y,z). (2)

g1,09

Since this representation alone contains unphysical local
configurations enlarging the Hilbert space, we have to im-
pose the following local constraint, fJ{fT + fIf 1=1, to recover
the physical Hilbert space. Using the fermionic spinon rep-
resentation of the spin operator, the Heisenberg spin Hamil-
tonian can be rewritten as follows:

7.
H== 2 2o fiofiofia (3)
01,02 (ij)
Here we have dropped unimportant constant terms.

To decouple the four fermion interaction term we define
spin singlet order parameters, X,-jE%E,,(fzafj,a). After im-
posing the single occupancy constraint using the Lagrange
multipliers u,, the mean-field Hamiltonian is given by

Hyp=-2 2, Ji_/‘(fiaf/‘,o'xfj +He)+ >, 20;lx?
a (ij) ()

+2 il ofio= 1) “)

To describe the phase fluctuation of the mean-field
Ansatz, we express x;; as x;;=X; €/, which leads to the
following Hamiltonian:

Hyqy=- > Jij(fi(xfj,a)?ije_ia” +He)+ X Mi(fj,( o= 1)

o (ij) Lo
()

In the above Hamiltonian Hy;), the local U(1) gauge
symmetry of the spin Hamiltonian which comes from the
local conservation of the fermion number is manifest via the

following gauge transformation:®*3

fi— 1,
a;— a;—0;+ 0, (6)
Here a;; describing the phase fluctuation of y;; plays the role
of the spatial components of the U(1) gauge field. Namely,
we have reformulated the quantum spin model as the prob-
lem of the spinons strongly coupled to the U(1) gauge field.

A systematic way of studying the coupled spinon and
gauge field system is to consider the large-N reformulation of
the problem extending the spin SU(2) symmetry to SU(N)
(with N even).?* We let the flavor index « run from 1 to N
and modify the single occupancy constraint as,

S fafia=- )

In addition, we scale the interaction strength J;;/2 to be
J;j/ N to make each term of the Hamiltonian to be of order N.
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The resulting large-N Hamiltonian is given by

N
Jij +
H== 2 XSl of ol dip (8)
a,p=1 (ij)

To treat the quartic interactions we perform a mean-field
decoupling by introducing SU(N) singlet valence band,
Xii= ,%,Ea(fz of j.o)- Assuming the valence-band amplitude is a
complex number, we obtain the mean-field Hamiltonian
given by

Hyp=-2, % T} of jaXi; + Hee)) +N<E Tl
oy i)

o3 ulfiufin-Y). ©

Since the fluctuations of x;; and the average local density
%,Ea(fz of i) scale as 1/yN, we can safely neglect those fluc-
tuations in the large-N limit justifying the mean-field ap-
proximation.

Here we consider the following mean-field Ansatz
Xii=xijle’®s where |x;]=x, on expanded links and |x;|=x;
on triangular links, respectively. We specify the various flux
patterns inside the elementary plaquettes, i.e., the triangles
and the dodecagons. The flux inside a triangle ®,, for ex-
ample, is defined in the following way, e/®2= ¢/(%i+djitbii),
where (ijk) indicates the three corners of a triangle traversed
along the counterclockwise direction. The flux inside a
dodecagon is also defined in the same manner. Since the flux
inside a closed loop is a gauge invariant object, different spin
liquid Ansatz can be distinguished based on the flux values
inside the elementary plaquettes. In particular, we use the
term SL[®x, Py, D yypeca00n] to represent the Ansatz which
has the fluxes @, inside an up-pointing triangle, @y inside a
down-pointing triangle and ®;, 4,40, inside a dodecagon.
With a given flux configuration we determine |y;| and
self-consistently by solving the following coupled mean-field
equations:

1 i . N
Nviteg % <fi’afi’a> - 2 '
1
Xij:NE <f:‘r,afj,a>» (10)

where N, is the number of lattice sites.

B. Properties of competing spin liquid phases

In this section we discuss the characteristic properties of
various spin liquid phases and their instabilities. In particu-
lar, we focus on translationally invariant mean-field states
which have nonzero | Xij| on every link of the lattice. Exten-
sive discussion on possible dimerized phases is given later in
Sec. III. As shown in the previous studies about the spin
liquid phases on the square® and kagome’3® lattices, the
inclusion of additional spin interactions can change the rela-
tive energetics of different spin liquid phases. Therefore it is
useful to understand the nature of various competing spin
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FIG. 2. (Color online) The spinon dispersion of the SL[0,0,0]
near the Fermi level. Among the six bands inside the first Brillouin
zone we plot the third and four band which are lying close to the
Fermi energy along the k, axis. The flatband is lying at the Fermi
level which touches with the dispersive band at the I" point.

liquid states which are the potential ground states of spin
Hamiltonians beyond the nearest-neighbor Heisenberg
model.

1. SL [0,0,0]: Uniform spin liquid state

To describe this state we introduce two real mean-field
order parameters, x, and y,, which lie on the expanded and
triangular links, respectively. Since the unit cell contains six
sites we obtain six different bands inside the first Brillouin
zone. Among the six bands, the third and fourth bands near
the Fermi level show an interesting structure displayed in
Fig. 2. There is a flatband lying on the Fermi energy which is
touching another dispersive band at the zone -center,
I'(k=0). The flatband comes from the existence of the local-
ized eigenstates, which occur due to the destructive interfer-
ence of hopping amplitudes between the localized units.’’
The flatband of the uniform spin liquid on the kagome lattice
emerges owing to the same reason. However, in contrast to
the kagome lattice problem, the flatband is lying exactly at
the Fermi level on the star lattice.

The flatness of the band at the Fermi energy is not the
generic property of the uniform spin liquid. There are pertur-
bations which do not break any lattice symmetry but spoil
the flatness by generating curvature. The third nearest-
neighbor hopping is such an example. However, the qua-
dratic degeneracy at the zone center is protected by the point-
group symmetry of the underlying unit cell.

To understand the stability of the spin liquid we derive the
low-energy effective Hamiltonian, which describes the states
near the zone center, expanding the Hamiltonian up to the
quadratic order of the momentum k. The procedure for de-
riving the effective Hamiltonian is outlined in Appendix C.
The resulting Hamiltonian is given by

(K)heg(K) (k)
efff (2 )zl// eff’ l,b(
in which

hee(k) = (K + k) 70— (k; — k) 7, = 2k K, 7

where the Pauli matrix 7; is acting on the two-component
space of the continuum field ()7=(¢,,) which describes
the two low-energy states near the I" point.

The SL[0,0,0] state respects all the space-group symmetry
of the lattice. In particular, if we choose the gauge in which
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Xij=X: on every triangular link and y;;=x. on every ex-
panded link with y, and y, being real constants, the action of
the symmetry generators on the spin operator, S, is the same
as that on the spinon operator, f;,. Since we consider the
low-energy excitations near the zone center, we focus on the
action of the point-group symmetry on the continuum fields.
The Dg point group of the star lattice consists of 12 symme-
try generators and is generated by the two elements, C, 3 and
R,. Here C,;3 means the  rotation with respect to the center
of a dodecagon and R, indicates the reflection about the x
axis. The details on the elements of the Dg point group are
discussed in Sec. III B.

Under the C.; and R,,
in the following way:

C7T/3: lr// - e_l(ﬁ/s)q-'v l/f’

the continuum field ¢ transforms

Ryp— 7.4, (11)

meaning all the fermion bilinears ' 7, (a=x,y,z) are for-
bidden by the point-group symmetry. Note that the z,/FTyz/f
breaks time-reversal symmetry as well since it shows sign
change under complex conjugation.

Next we consider the fermion bilinear terms that contain
spatial derivatives. Because the dynamical critical exponent
is two, the terms with a single spatial derivative are relevant
and those with two spatial derivatives are marginal perturba-
tions. Investigating the transformation rule under the Dy
point-group symmetry, it can be easily checked that 7,y
transforms as the one-dimensional A, irreducible representa-
tion and ('7.4b, ¢ 7.¢) forms a basis for the two-
dimensional E, irreducible representation.®® Similarly, the
transformation properties of derivative terms can be deter-
mined. At first, the linear derivative term, (d,,d,) transforms
as a two-dimensional E, irreducible representation. To have
terms with linear derivatives in the Hamiltonian, the product
of the fermion bilinear and the derivative must be invariant
under the point-group symmetry operations. Using the de-
compositions of E;®A,=FE; and E\®E,=B; ®B,®E;, we
see that every product of fermion bilinears and the linear
derivative is not invariant under the point-group symmetry.
Therefore linear derivative terms are not allowed. On the
other hand, we have a second derivative term (&i—&i,&x&y)
making a two-dimensional E, irreducible representation. Us-
ing E,®A,=F, and E,® E,=A; ®A,® E,, we see that there
is a term following A, irreducible representation, which is
nothing but [(24,4,) 7, +((92 &2)7 1. Therefore in addition
to the isotropic ¢ (075+(92)l// term 1,//*[(2& AT+ (- &2)7]1//
is the only term allowed by symmetry. Smce these terms are
already present in the Hamiltonian, the low-energy properties
of the SL[0,0,0] are not spoiled by these marginal perturba-
tions. However, these perturbations add curvature to the flat-
band.

Finally, we discuss the effect of the four fermion interac-
tion terms on the stability of the SL[0,0,0] state. Though a
simple power counting shows that the four fermion interac-
tions are marginal, they are actually marginally relevant. Re-
cently, the effects of the four fermion interaction on the qua-
dratic band crossing are studied using the renormalization
group approach.34% According to Ref. 39, the leading weak-
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FIG. 3. (Color online) (a) The reduced Brillouin zone (the solid
line) corresponding to the doubled unit cell along the a; direction.
G and G, indicate the reciprocal lattice vector corresponding to the
doubled unit cell. (b) The flux configuration of the SL[0,0, 7] state.
The 12-site unit cell is surrounded by a dotted box. We assign
—1(+1) for the hopping amplitude on the thick (thin) bond.

coupling instability leads to the state with nonzero (7,1,
breaking the time-reversal symmetry. It means that SL[0,0,0]
state is unstable toward a chiral spin liquid state supporting
chiral edge states.

2. SL[0,0, 7] state

The SL[0,0, 7] state supports 7 flux piercing the dodeca-
gons. Even though this state does not break the translational
symmetry, the mean-field description requires doubling of
the unit cell. Here we consider the doubling of the unit cell
along the a; direction. For the lattice vectors 2a; and a,, the
reciprocal lattice vectors are given by

i) o
1= 2, 2\/5 ) 2= ,V’/g .

The reduced Brillouin zone corresponding to the above re-
ciprocal lattice vectors is depicted in Fig. 3(a).

For the mean-field description of the SL[0,0, 7] state, we
have chosen the flux configuration as described in Fig. 3(b).
Since there are 12 sites inside the unit cell, we have 12 bands
within the Brillouin zone. The mean-field spinon dispersion
of the low-energy bands near the Fermi level is described in
Fig. 4. This state does not have a spinon Fermi surface and
shows a gapped spectrum. The lower flatband (valence band)
is doubly degenerate and the upper band (conduction band)
is dispersive.

According to the projected wave-function study that is
discussed in detail later in Sec. IV B, the SL[0,0, 7] state
has the lowest ground-state energy among the various spin
liquid Ansatz over a wide parameter range. Unfortunately,
however, the SL[0,0, ] state is unstable once gauge fluc-
tuation is allowed. Since the spinon spectrum has a finite
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FIG. 4. (Color online) The low-energy spinon bands of the
SL[0,0, 7] state near the Fermi level. The lower band (valence
band) is flat and doubly degenerate. The upper band (conduction
band) has small dispersion. The locations of the conduction-band
minimum are described by m;. The dispersion is plotted along the
ky= \53kx+% line passing the m; and m,.

gap, the low-energy excitations are described by the compact
U(1) gauge theory. In 2+1 dimension, the compact U(1)
gauge theory is confining,”® which means that free spinons
with unit gauge charge can only make charge neutral bound
states. In addition, the interaction between spinons can also
induce various kinds of broken symmetry states. Extensive
discussion on the instability of the SL[0,0, ] state and its
relation with candidate valence-bond solid phases are given
in Sec. V.

3. SL[3,5,7]: A chiral spin liquid state

Next we consider flux phases which possess finite flux
inside triangles. A triangle that supports 7 flux breaks time-
reversal and parity symmetry but preserves the combination
of them. A convenient way to investigate the time-reversal
symmetry breaking in spin systems is to consider the expec-
tation value of the scalar spin chirality operator® defined as
follows:

Ci=Si"(S;X8y. (12)

Since C; jx is odd under both the time-reversal () and parity
operations, the ground state breaks both symmetries when
the expectation value of the scalar spin chirality operator

(CA'U,) is nonzero. In other words, the scalar spin chirality
plays the role of the order parameter measuring time-reversal
symmetry breaking.

Because the unit cell contains two triangles, we can define
the following two different scalar spin chirality operators:

A

Cuniform = Sl : (SZ X SS) + S4 : (SS X S6)a

é‘_vtaggered = Sl : (SZ X S3) - S4 : (SS X SG)’ (13)

where CA‘unifb,m and C staggered are the uniform and staggered
scalar spin chiralities, respectively. To understand the sym-

metry properties of the émif,,,,,, and éstagge,ed we have to
recognize that there are two different reflection symmetries
on the star lattice. The reflection (P;) with respect to the axis
connecting the center of a dodecagon with the midpoint of an
expanded link [for example, the a axis in Fig. 12(a)] inter-
changes the up-pointing triangles and the down-pointing tri-
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angles. On the other hand, the other reflection (P,) about the
axis connecting the center of a dodecagon with a vertex of a
triangle [for example, the A axis in Fig. 12(a)], leaves each

triangle as it is. Under the P, reflection both CA‘Wifo,m and

CA‘Smgge,ed change their signs. Here we use the term parity to
indicate the P, reflection symmetry. Note that the parity op-
eration is equivalent to the reflection in two-dimensional
space.

CA'umfwm is odd under both the time-reversal (7) and parity
(P,) but even under inversion (/). On the other hand

CA‘Smgge,ed is odd under time-reversal and inversion but even
under parity. Here the inversion operation is defined with
respect to the midpoint of the expanded link connecting two
triangles. In both cases, the combination of the time reversal,
parity transformation, and inversion (TP,I) is equivalent to

the identity operation under which both the Cumﬂ,rm and
Caggerea A€ invariant.*!
The SL[7,7,7] is characterized by nonzero C,;s,, but

with vanishing CA’mggmd. Therefore it breaks time reversal
and parity transformation while it is invariant under the com-
bined operation. It is a chiral spin liquid state which has a
finite energy gap. In Fig. 6(a) we plot the spinon dispersion
near the Fermi level corresponding to the valence and con-
duction bands. The energy gap is minimum at the momentum
Q=(w/3,0) and —-Q. If we expand the mean-field Hamil-
tonian near the dispersion minimum, Q and —Q in the limit
of large J,/J,, we can get the following effective low-energy
Hamiltonian:

d2q s
Heff= f w‘l’ (q){vF[qux + CIyT»] - mTz}\P(q)7
(14)

where the Fermi velocity vp=J,x,/ V3 and the mass
m=(x)) 1 (V 37,x,). In the above we deﬁne the eight compo-
nent Dirac fermion field, V= ((p1 w0 P2, tw) in which 1 and
2 are the two-component Dirac indices, o and o are indices
for the nodes (=Q) and spins. The Pauli matrix 7, acts on
the two-component Dirac space. For later convenience we
define two additional Pauli matrices, & and & acting on the
nodal and spin spaces, respectively.

Since the mass term has the same sign in the two nodal
positions, integrating out fermions leads to the Chern-
Simons gauge field action. As a consequence, the charge
neutral spinon Hall conductivity should be finite. The Chern-
Simons term stabilizes the spin liquid ground state by pro-
viding a finite mass to the U(1) gauge field. Therefore the
U(1) gauge field can only mediate a short-range interaction
between the spinons, which makes the fractionalized par-
ticles (the spinons) to be the elementary excitations of the
spin liquid ground state.®

4. SL[—;, 2 ,01: A nematic spin liquid state

The SL[-7,7,0] is characterized by nonzero CA'Smgge,ed

but with vanishing éum-form. Therefore it breaks both the
time-reversal and inversion operations but is invariant under
the parity transformation. Because the fluxes of the two tri-
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FIG. 5. Flux configuration of the Ansatz SL[2 .37 and
SL[-7,5.0]. Hopping along (against) the direction of an arrow
induce a phase 7/2 (—7/2). (a) The flux pattern for SL[F, 7, 7).
Counterclockwise motion along an triangular link results in the flux
7 (b) The flux pattern for SL[-7,7,0]. Counterclockwise motion
along an up-pointing (down-pointing) triangular link results in the
flux -7 (7).

angles within the unit cell have opposite sign, the sixfold
rotational symmetry is broken down to the threefold symme-
try [see Fig. 5(b)]. Thus it is a nematic spin liquid.

The mean-field spinon dispersion corresponding to the
two bands near the Fermi energy is plotted in Fig. 6(b). The
spin liquid Ansatz has a spinon Fermi surface which consists
of an electron pocket at the K=(27/3,0) point and a hole
pocket at the —K point.

Expanding the mean-field Hamiltonian using J,x,/J.x; as
an expansion parameter, the following effective low-energy
Hamiltonian can be obtained:

(b) 0.5J¢
k N~ —— ]
(a) ’ Ek) PN
. kx K-a a K-0.5 Jo
K\;@  a/K ©) 05,
/‘\
E(k) \_/
-0.5Je

-K -Q Q K

FIG. 6. (Color online) The mean-field spinon band structure of
the Ansatz SL[5,7,7] and SL[-7,7,0] along the k, axis when
J,=2J,. (a) The first Brillouin zone. Here Q and —Q denote the
points in which minimum (maximum) of the conduction (valence)
band of the SL[7,7,7] occurs. The K and —K indicate the points
where the linear band touchmg between the two bands near the
Fermi energy of the SL[-5 323 2,0] occurs. (b) The dlspersmn of the
valence and conduction band corresponding to the SL[2 .57 An-
satz. The low-energy excitation near the =Q can be described by
the massive Dirac particles. (c) The dispersions of the two bands
near the Fermi level for SL[-7,7,0]. The low-energy excitation
near the =K point can be described by the Dirac particles under the
staggered chemical potential.
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FIG. 7. The generators of the point-group symmetry of the
SL[-7.%.0]. R, maps y to —y while C,,3 induce the rotation by
2m/3 with respect to the center of the dodecagon.

dZ
Heff: f ﬁqfr(q){vF[q,\fo + q‘yTy] - Mluz}q,(q)»
(15)

where the Fermi velocity vp=J,x./ V3 and the * ‘staggered”
field M=(/2x2)/ (V 37,x,). Since the effective chemical poten-
tials coming from the staggered field M have the opposite
signs at the two nodal points, we have both an electron
pocket (at the K point) and a hole pocket (at the —K point)
on the Fermi surface.

In contrast to the SL[7,7, 7] state which has a gapped
spinon spectrum, the SL[-7,7,0] state has gapless low-
energy excitations. To confirm that the low-energy descrip-
tion based the above effective Hamiltonian in Eq. (15) is
valid after including the fluctuation beyond the mean-field
description, we have to check whether there are relevant per-
turbations which are allowed by symmetry. Especially, some
of the fermion bilinears, which are made of W, can poten-
tially generate various mass terms which spoil the low-
energy description of Eq. (15).

To judge the stability of this spin liquid state, we have to
understand how the symmetries of the microscopic Hamil-
tonian are realized in the effective continuum theory. Even
though the original spin Hamiltonian is invariant under the
full space-group transformations, after the gauge theory for-
mulation of the problem, the symmetry of the mean-field
Hamiltonian is realized projectively. That is, under the sym-
metry transformation S with the mapping i — S(i), the spinon
operator f; , transforms in the following way:

S:fi.o — Gs()fs).0

where Gg(i) is a phase factor which depends on the symme-
try operation S, and a local coordinate i. The group of the
symmetry operations which make the mean-field Hamil-
tonian invariant is called the projective symmetry group
(PSG).42’43

To perform the PSG analysis we have to specify the sym-
metry group of the spin Hamiltonian. The star lattice has the
Dy point-group symmetry generated by the sixfold rotation
symmetry with respect to the center of a dodecagon and the
reflections. However, due to the finite fluxes inside triangles,
the SL[-7,7,0] state breaks some Dy point-group symme-
tries. Especially, the sixfold rotational symmetry is broken
down to threefold rotational symmetry. The point-group
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symmetry of the SL[-7, 7,0] state is generated by the 27/3
rotation (C, ;) around the center of the dodecagon and the
reflection (R,) which maps y to —y. The symmetry operations
which generate the point group of the SL[-7,7,0] state are
depicted in Fig. 7. The SL[-3 3, 2 T .0] state is also invariant
under the translations (7,; and T,,) by the lattice vectors a,
and a,. In combination with the above point-group symme-
try, the translational symmetry defines the space group of the
SL[-7,7,0] state. In addition, the SL[-7,7,0] state is in-
variant under the combination (71) of the time reversal (T)
and inversion (I) as well as the spin rotation. Finally, it has
the charge conjugation symmetry (C*) via the mapping
fia— € }La, where ¢€=1 for i=1, 2 and 3 and -1 for
i=4,5,6. Under these symmetry operations the continuum
field W transforms as follows:

T-IV— (o)1, ¥,
C:W — (i) [V,

T, W — P73y,

Taz:\If N 61(277/3),%\1,’
RV — u 7V,

C27T/3:\If — 8_1(277/3)73‘1,. (16)

Using the above transformation rules we can easily check
that W' W is the only fermion bilinear which is allowed by
symmetry. Therefore the low-energy Hamiltonian in Eq. (15)
is valid even after we include the fluctuations and protected
by the projective symmetry group. Some details about how
we have determined the transformation rule of the continuum
fields are explained in Appendix B.

Next we discuss about possible instability of the
SL[-7/2,m/2,0] state. The low-energy effective Hamil-
tonian [Eq. (15)] which is obtained from the perturbative
expansion in powers of J,x,/J,x, implies that the electron
pocket (at the K point) and the hole pocket (at the =K point)
are nested in the large J,/J, limit. Therefore the instability in
the particle-hole channel with the momentum 2K is ex-
pected The following two fermion bilinears, m,=Wi7 u, ¥
and i, =Vr -V, are especially 1mp0rtant in this respect
Add1t10n of the mass term Hy,=M i1+ M i, to the effective
Hamiltonian in Eq. (15) leads to the mass gap of
2vM2+M§+M3. Since these mass terms are anticommuting
with the effective Hamiltonian in Eq. (15), the pair (71, 77,)
opens the largest mass gap than any other pairs of possible
mass terms. Interestingly, (r,,7,) transforms nontrivially
under the space-group operations. Its symmetrl property is
consistent with some ordered state with 3 X 3-type trans-
lational symmetry breaking. Using the terminology defined
in Sec. Il B, (r71,,77,) transforms as the Ej irreducible rep-
resentation under the enlarged point group Gpy,. The detailed
discussion on the group theory for the star lattice is given in
Sec. III B.
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FIG. 8. (Color online) The low-energy spinon bands of the
SL[7,%.0] and SL[-7,7, 7] plotted along the k,= =13k, direction.
(a) For SL[2 »3 2,0]. The locations of the minimum band gap are
described by m;. (b) For SL[-7, 7, 7]. Here m; and my (m; and m,)
indicate the location of the electron (hole) pockets.

5. SLIZ,%,0] and SL[-%,% =]

We obtain SL[7,7,0] (SL[-3,5,]) phase by puttlng
additional 7 flux on every dodecagon on top of SL[7,7, ]
(SL[-7,7,0]) states. Due to the introduction of the addi-
tional 7 flux, the mean-field description requires unit cell
doubling although the actual physical wave function main-
tains the translational invariance.

The spinon dispersion of the SL[7,7,0] state is described
in Fig. 8(a). Basically, the structure of the low- energy spec-
trum of SL[7,7,0] is similar to that of SL[7,7, ], except
that the number of the momentum points which support low-
energy excitations is doubled. Both of them are characterized

by finite éu,u-ﬂ,,m indicating the time-reversal and parity sym-
metry breaking. Therefore the SL[7,7,0] state is also a chi-
ral spin liquid state. The low-energy excitations can be de-
scribed by the effective Hamiltonian similar to Eq. (14)
which can be obtained following the same procedure we
used to derive Eq. (14) for SL[7, 7, 7].

In Fig. 8(b) we have drawn the low-energy spinon exci-
tation spectrum of the SL[-7,7,] state. There are two
electron pockets (around m; and ms) and two hole pockets

(around m, and my). It is characterized by finite é’s,agge,ed
showing broken time reversal and inversion symmetry. Since
the fluxes inside up triangles and down triangles have oppo-
site signs, the sixfold rotational symmetry is broken down to
threefold rotational symmetry. Therefore it is another nem-
atic spin liquid state.

II1. DIMER PHASES
A. Large-N approach

According to the pioneering work by Rokhsar,** when the
lattice system is dimerizable, the best mean-field Ansatz is
one of dimerized states in the large-N limit of the
SU(N)-generalized Heisenberg model. Here we call a lattice
to be dimerizable when it is possible to make every site

PHYSICAL REVIEW B 81, 134418 (2010)

FIG. 9. (Color online) The J,-dimer VBS state. This is the
ground state in the large-N limit when J,>J,.

belong to a dimer and a lattice site be paired with one and
only one of its neighboring site. In particular, when every
dimer is lying on the link which has the maximum exchange
coupling J,,,,., the dimer state belongs to the ground-state
manifold of the mean-field Hamiltonian. In terms of the vari-
able x;;, we have finite y;; only on the dimers lying on the
link which has the maximum spin coupling J,,,,,-

The star lattice is dimerizable with respect to J,. There-
fore when J, is larger than J,, it has a unique dimerized
ground state (we call it the J,-dimer VBS) in which every
dimer is lying on an expanded link connecting neighboring
triangles. In Fig. 9 we describe the geometric arrangement of
singlet dimers of the J,-dimer VBS phase.

On the other hand, the Rokhsar’s general theorem cannot
be applied when J, is larger than J,. This is because the star
lattice is not dimerizable with respect to the J, links and
every dimer configuration defined on the star lattice contains
a finite number of dimers lying on the J, links. Therefore it is
possible that the translationally invariant mean-field Ansatz
can be the ground state even in the large-N limit.

When J,>J,, we have to maximize the number of the
dimers lying on triangular links to minimize the ground-state
energy of dimerized states. Since every triangle can support a
single dimer at most (we call the triangle with a dimer lying
on it a filled triangle), the remaining unpaired lattice point of
the filled triangle has to be a part of the dimer lying on an
expanded link. In other wards, every dimer lying on an ex-
panded link is connecting two filled triangles and this de-
scribes a representative local dimer configuration of the

(@) (b)

FIG. 10. (Color online) (a) The representative local dimer con-
figuration when J,>J,. A dimer lying on an expanded link connects
two neighboring filled triangles which are supporting dimers on
them. (b) The 18-site flippable loop which consists of the alternat-
ing bright (blue) and dark (black) thick lines.
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(@) (b)

FIG. 11. (Color online) Two low-energy valence-bond solid
(VBS) order which are coming from the 1/N correction. (a) The
columnar 18-site VBS. (b) The box 18-site VBS.

lowest-energy dimerized states when J,>J, [see Fig. 10(a)].
Using this local dimer configuration as a building block we
can construct infinite number of degenerate dimerized
ground states.

To understand how the degeneracy of these dimerized
phases is lifted by fluctuations, we consider the 1/N correc-
tions to the ground-state energy. In Ref. 22, Read and Sach-
dev investigated the 1/N correction systematically for a
similar problem defined on the square lattice. We first review
the main ideas of their work briefly and extend the approach
to our star lattice problem. For a given dimer configuration,
Xi; we include the fluctuations dy;; as x;;=X;;+ Ox;;- Here x;;
is nonzero only on the link supporting a dimer lying on it.
Expanding the effective action to the quadratic order in the
fluctuations, the ground-state degeneracy of the dimerized
states on the square lattice could be lifted by the following
terms: OS.r N X;;OXjiXxOxyi- Here i,j,k, and [ indicate the
four corners of a square plaquette. When a pair of links lying
in parallel are occupied by two dimers (;; and Yj;) and the
remaining pair of the links are assigned to the fluctuations
(8x;x and Jy;;), the 85,y term above can induce additional
lowering of the ground-state energy. It means that dimer con-
figurations which support the maximum number of the par-
allel dimer pairs span the ground-state manifold. The four-
fold degenerate columnar valence-bond solid is selected as
the ground state following these procedures.

The above idea of the 1/N correction can also be re-
phrased in the following way. For every square plaquette
composed of two parallel dimers, we can define a loop which
consists of alternating occupied and empty links. Here we
call such a loop as a flippable loop!® because two degenerate
dimer configurations are connected via a loop flip, i.e., the
interchange of the occupied and empty links. The 1/N cor-
rection captures the energy lowering through the resonance
process which can also be described as a loop flip. The re-
sulting ground state (a columnar dimer state) supports the
maximum number of the flippable loops. This idea can be
generalized to the higher-order corrections and the degen-
eracy of dimerized states begins to be lifted from the lowest-
order correction corresponding to the smallest flippable loop.
Marston and Zeng?® discussed the effect of the 1/N correc-
tion on the degeneracy lifting process for the kagome lattice
antiferromagnet. There, the first term that lifts the degen-
eracy involves the six-site flippable loop, which is the so-
called perfect hexagon with three dimers on it. The valence-
bond solid ground state of the kagome lattice, which contains
36 site within the unit cell, results from the condition of
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maximizing the number of the perfect hexagons.!>!%23 The
similar idea was also applied to the square-kagome
antiferromagnet.>”

In the star lattice problem with J,>J,, the dimerized
ground states are constructed by repeating the representative
local dimer configuration displayed in Fig. 10(a). In this
ground-state manifold, the smallest flippable loop contains
18 sites with a dodecagon at the center, which is shown in
Fig. 10(b). Here when the bright (blue) thick link is occupied
by a dimer, the neighboring dark (black) thick link is empty
and vice versa. By interchanging the roles played by the
bright (blue) links and the dark (black) links, two degenerate
dimerized phases can be connected.

Therefore the fluctuation corrections pick the patterns that
maximize the number of the 18-site dimer units participating
in the 18-site flippable loops. In Fig. 11(a) we show the
valence-bond solid order which has the maximum number of
the 18-site flippable loops. Among the six neighboring
dodecagons around an 18-site dimer unit, three can be the
centers of the 18-site dimer units. This is in contrast to the
case of the kagome lattice problem. There, none of the six
neighboring hexagons around a perfect hexagon can be per-
fect hexagons. In fact, the valence-bond solid states on the
star lattice have similarity with those on the square lattice. In
the case of the square lattice, among the four neighboring
square plaquettes around a central plaquette supporting two
parallel dimers, half of them (two square plaquettes) can sup-
port two parallel dimers. By maximizing the number of the
square plaquette composed of two parallel dimers, the co-
lumnar valence-bond solid emerges.

Based on the similarity with the square lattice problem,
we can call the valence-bond solid in Fig. 11(a) as a colum-
nar 18-site valence-bond solid. In this figure all the dodeca-
gons except the central one support the 18-site dimer unit.
The threefold degeneracy of the columnar 18-site VBS
comes from the broken translation symmetry. In addition we
also consider another low-energy valence-band order which
is displayed in Fig. 11(b). Here the 18 links around the 18-
site unit have the same finite value of ;;. In analogy with the
square lattice problem this phase can be called as the 18-site
box VBS phase. The translational symmetry breaking results
in the threefold degeneracy in this phase as well. In the re-
cent numerical study by Misguich et al.,* this phase was
suggested as a possible valence-bond solid ground state
when J,>1.3J,. In contrast to the VBS phases on the square
lattice, however, the 18-site columnar VBS phase has lower
energy than the 18-site box VBS phase on the star lattice
even in the large-N limit. Therefore we propose the 18-site
columnar VBS phase as a promising ground-state candidate
of the star lattice Heisenberg model for J,>J,.

B. Group theoretical approach to \e“gX \3 bond orders

The columnar and box 18-site VBS phases discussed in
the above section break the lattice translational symmetry
and are described by the enlarged 3 X V3 unit cell. Here we
perform the detailed symmetry analysis on the bond order
that are compatible with the v3 X \3 enlarged unit cell.

1. Group theory for the star lattice

The star lattice has the Dy point-group symmetry. The 12
elements of the D¢ group are as follows:
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FIG. 12. (a) The intersections between the reflection planes and

the lattice plane. (b) The lattice vectors b, and b, corresponding to
the v3 X y3 ordered states.
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D6 = {E, C65 Cé9 C27 Cé, CgsRlechsRA,RB’RC}’

where C¢ means the rotation by 27/6 around the center of a
dodecagon and E is the identity operator. R, indicates the
reflection with respect to a plane orthogonal to the lattice
plane. The reflection planes (denoted by «) are described in
the Fig. 12(a).

The space group, Gg, of the star lattice is generated by the
translation group, G, and the D¢ point group. An element of
the space group can be written using the Seitz operator
{gD6|t}, where g, is an element of the Dg group and
t=n,a,+n,a,. (n, and n, are integers.) The action of a Seitz
operator on a lattice point r is defined as {gD6|t}r= gp I+t
Note that the translation group, G, is an invariant subgroup
of the space group Gy and the point group Dy is the corre-
sponding factor group, i.e., Dg=Gg/Gy.

To understand the symmetry of the enlarged unit cell, we
define another translation group, Gz, whose elements can
be written as

GT’b:{{E|I’l1b1 +n2b2};nl,n2 (S Z}, (17)

where b;=a,+a, and b,=2a,—a, are the lattice vectors cor-
responding to the \3X\3 ordered state [see Fig. 12(b)].
Since Gy, is an invariant subgroup of the space group Gy,
the enlarged point group Gpy, can be defined as the factor
group Gpp=Gg/Gry. Therefore the elements of the space
group can be written as {gG |n1b1+n2b2} in which 86,

an element of the enlarged pomt group, Gpy,. (Note that 51m1-
lar approach was used by Hermele er al. 100 investigate the
symmetry properties of the object invariant under the trans-
lations by 2a; and 2a, on the kagome lattice.)

The construction of the Gpj, group is straightforward,
whose elements can be written using the Seitz operator
{gD6|f} with £=0, a,, a,. The 36 elements of the {gD6|f} can
be grouped into the nine conjugate classes,

Ce=1{{E[0}},
Cr={{Ela;}.{Ela}},
Co=Hcelon{celod,

Cor=HCel0}{CF|0}{Cqla }.{CFlai}.{Celar}, {CElar}},

Cer={{Céla,}.{C¢la,}.{Celas}.{C¢las}}.
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TABLE 1. The character table of the enlarged point group

Ce Cr C; Cor Coq Ci R Rip Ry
Ay 1 1 1 1 1 1 1 1 1
A, | 1 1 1 1 1 -1 -1 -1
B, | 1 | -1 1 -1 1 | -1
B, 1 1 1 -1 1 -1 -1 -1 1
E, 2 2 -1 1 -1 -2 0 0 0
E, 2 2 -1 -1 -1 2 0 0 0
Es 2 -1 2 0 -1 0 2 -1 0
E, 2 -1 2 0 -1 0 -2 1 0
(0] 4 e ) 0 1 0 0 0 0

Cir=1{Celoh{Cqla} {Colanl,
R, ={{R,|0}.{R,|0}.{R |0},
Ri7={R.|a}{Rpla . {R[a . {R |ar} {R,[as}.{R |as}},

Ror= {{RA|O}»{RB|O}’{RC|O}’{RA|31}’{RB|31}»
{Rcla ) {Ra|as}.{Rplas} . {Rc|as}}.

Table I displays the character table corresponding to the
enlarged point group Gpy. It consists of the four one-
dimensional irreducible representations (A, A,, B;, and B,)
and the four two-dimensional irreducible representations, E,
(a@=1,2,3, and 4) and a four-dimensional representation Q.
Note that the four one-dimensional irreducible representa-
tions and the two-dimensional representations E; and E, are
simple extensions of the six irreducible representations of the
original Dg point group. They describe states which are in-
variant under the lattice translations by a; or a, as is re-
flected in the column for Cr in Table. I. Therefore the
V3 X 3- -type orderings can be described only through the
remaining three irreducible representations E;, E,, and Q. It
turns out that the two-dimensional irreducible representa-
tions E3 and E, are especially important considering the con-
sistency with the numerical result.”

2. \3X\3 bond ordering patterns

Here we focus on all possible bond ordering patterns
which are compatible w1th the \3 X \3 enlarged unit cell.
Labeling the 27 links i
bond ordering pattern is given by the hnear combination of
the |[) as

[bond order) & >, ¢/|1), (18)
7

where c; is proportional to the strength of the singlet corre-
lation on the link /, i.e., ¢, —(S;-S;). Here i and j denotes the
two sites constituting a link /. The vector space spanned by
|Z) constitutes a reducible representation (defined as I'y,4) of
the enlarged point group Gp), whose decomposition into the
irreducible representations is given by
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(a) (b)

FIG. 13. (Color online) Description of the pair of the E? bond
ordered states which form a basis of the Ej irreducible representa-
tion. (a) ¢;=\3 for the thick light (red) links, —\3 for the thick dark
(black) links, and zero for the thin solid links. (b) ¢;=1 for the thick

light (red) links, —2 for the thick dark (black) links, and zero for the
thin solid links.

Fbond:2Al (&) Bz (&) E] @ 2E2 (&) 2Eg @ E4 @D 3Q

Notice that I'y,4 supports two independent E5 irreducible
representations (we call them as E5 and E5, respectively) and
one E, irreducible representation. The bond ordering patterns
which constitute a basis of each irreducible representation
are displayed in Figs. 13—15 describing Eg‘, Ef, and E, irre-
ducible representations, respectively.

A bond order transforming as an Ej irreducible represen-
tation can be represented by a linear combination of states
like

|E3 bOIld Order) = |E§(Cl)> + a2|E';(b)> + a3|E§(a)>
+ ay|E5(b)), (19)

in which |E5(a))=3,c/|l) with ¢, specified in Fig. 13(a). The
other three basis states |E5(b)), |[E5(a)), and |E5(b)) are de-
fined following the same way.

Interestingly the bond ordering patterns of the two
valence-bond solid states, the columnar and box 18-site
VBS, are given by the following superposition of states:

|Columnar VBS) o [uniform) — |E5(b)) — |E5 (b)),

(@) (b)

FIG. 14. (Color online) Description of the pair of the E5 bond-
ordered states which form a basis of the Ej irreducible representa-
tion. (a) ¢;= \3 for the thick light (red) links, —3 for the thick dark
(black) links, and zero for the thin solid links. (b) ¢;=1 for the thick
light (red) links, —2 for the thick dark (black) links, and zero for the
thin solid links.
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(a) (b)

FIG. 15. (Color online) Description of the pair of the E, bond-
ordered states which form a basis of the E, irreducible representa-
tion. (a) ¢;=13 for the thick light (red) links, —\3 for the thick dark
(black) links, and zero for the thin solid links. (b) In each triangle
the link belonging to the central dodecagon has the ¢;=2 (-2) if it

has red (black) color. The other two links of the triangle have
¢;=1 (=1) if they have red (black) colors.

1 1
|Box VBS) o |uniform) + E|E§(b)) + §|E§(b)> (20)

where |uniform)=3|l). Since both the columnar and box
18-site VBS are invariant under the reflections R,, R, and
R,, |[E5(a)) and |E5(a)) have no contribution. Superpositions
of the |E5(b)) and |E5(b)) can induce more general bond
ordering patterns other than those described in Fig. 11. Fi-
nally, since E, irreducible representation always breaks the
reflections R,, R,, and R, (see Fig. 15), we neglect bond
orders transforming as E, irreducible representation.

IV. GROUND-STATE ENERGY

In this section we compare the ground-state energies of
various spin liquid states.

A. Mean-field theory

The ground-state energies of various spin liquid states for
J,=2J, are shown in Table II. In addition to the translation-
ally invariant spin liquid states with finite J, and J,, we have
also considered a decoupled dimer phase for comparison. A
decoupled dimer phase, which has the lowest mean-field
ground-state energy for J,>J,, can be built based on the
local dimer configuration described in Fig. 10(a). The colum-
nar 18-site valence-bond solid (VBS) displayed in Fig. 11(a)

TABLE II. The ground-state energies of the various mean-field
Ansatz when J,=2J,. The energies are measured in unit of J,.

Eyr (unprojected) Eyr (projected)

Dimer ~0.625 ~0.625
SL[0,0,0] ~0.498 ~0.647
SL[Z,Z, 7] -0.553 ~0.624
SL[-Z,Z,0] -0.553 -0.616
SL[0,0, 7] -0.498 ~0.654
SL[Z,Z,0] -0.552 -0.617
SL[-Z,%, ] ~0.552 ~0.614
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FIG. 16. The ground-state energy per spin of the various spin
liquid Ansitze computed using Gutzwiller projection. (a) Energies
for 0=J,/J,=1 measured relative to the J,-dimer VBS state shown
in Fig. 9, which has an energy —-3J,/8 per spin. (b) Energies for
1=J,/J,=<3 measured relative to the 3 X y3 VBS state shown in
Fig. 11 which has an energy —J,/4-J,/8 per spin. Note that
SL[0,0, 7] (solid line is a guide to the eyes) has the lowest energy
over the whole parameter space. SL[0,0,0] has the second lowest
energy for a wide range for J,>J,. For J,=2J,=2, the energy per
spin of all six spin liquid Ansitze are given in Table II. (These
computations were carried out on a system with 6 X6 unit cells,
i.e., with 216 spins, and the statistical error bars on the energy are of
the order of the symbol size.)

is an example. According to the mean-field calculation, the
dimer state has lower ground-state energy than any other
translationally invariant spin liquids. Among the spin liquid
phases with translational invariance, the four Ansatz having
the 77/2 flux inside triangles have lower energies than those
having zero flux inside triangles, i.e., SL [0,0,0] and
SL[0,0, 7].

B. Projected wave-function study

In the above mean-field calculation, the single occupancy
constraint is imposed only on average. Therefore the mean-
field wave functions contain unphysical states with zero or
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two fermions at a point. To obtain physical spin wave func-
tions we therefore perform a numerical Gutzwiller projection
on the mean-field wave functions. The ground-state energies
of the projected states are computed numerically using the
variational Monte Carlo (VMC) method.**® The resulting
energies are displayed in Fig. 16 for a range of J,/J, where
we have optimized the state with respect to x,/x, for each
value of J,/J,. Table II shows the numerical energy values
for J,/J,=2.0 to facilitate a comparison with the mean-field
numerics. We find that Gutzwiller projection dramatically
changes the relative ordering of the various states and that
the state SL[0,0,7] appears, upon projection, to be the
lowest-energy spin liquid over the entire parameter range.
For J,/J,=1, the variational energy of the SL[0,0, 77| state is
—0.462J, per spin, which is in good agreement with an exact
diagonalization study®® where the ground-state energy is es-
timated to be —0.465J, per spin.

C. Bond operator approach

According to the projected wave-function study,
SL[0,0, ] state is the ground state over a wide parameter
space. However, the SL[0,0, 7] state is unstable due to the
confinement in the 2+ 1-dimensional pure gauge theory. It is
also inconsistent with our expectation for the J,>J, limit.
When J,>J,, the J,-dimer VBS phase (see Fig. 9) is the
exact ground state. In addition the recent exact diagonaliza-
tion study shows that the J,-dimer VBS phase remains as the
ground state up to the isotropic limit of J,=J,.2® Therefore
SL[0,0, ] state should have higher energy than J,-dimer
VBS phase at least in some finite range of 0=J,/J,= 1. This
discrepancy comes from the lack of the interdimer interac-
tion in the decoupled dimer limit. For the description of
dimerized phases beyond the decoupled dimer limit, we un-
dertake the self-consistent bond operator approach.*’=# If
the correction coming from the interdimer interaction is sig-
nificant, we also have to check the possibility that the true
ground state is a valence-bond solid even when J,>J,.

In the bond operator formulation, the dimer singlet de-
grees of freedom are used as natural building blocks and the
quantum corrections coming from the triplet fluctuations can
systematically be investigated.’*>! Here we present a brief
explanation of the bond operator formulation. Let us con-
sider the two S =% spins constituting a dimer singlet, S; and
S;. The Hilbert space is spanned by four states that can be
taken as a singlet state, |s), and three triplet states, |z,), |z,),
and |t,). Then, the singlet and triplet boson operators are
introduced such that each of the above states can be created
from the vacuum |0) as follows:

|s)=s'|0) = —L(Iw— L),
V2

|ty =1tl]0y=— —lr(lm— L1,
V2

o
1,y =1,]0)= E(H D+,
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FIG. 17. (Color online) Comparison of the ground-state energy
of SL[0,0, ] to that of J,-dimer VBS for 0=J,/J,=1. To empha-
size the importance of the interdimer interactions we present the
energies of J,-dimer VBS obtained in three different ways. The
“decoupled” indicates the energy of the decoupled dimers. “Quar-
tic” (“quadratic”) is the energy from the bond operator theory with
(without) the quartic interaction effect.

1
ty=10y=—=(T ) +[L1)).
V2

To eliminate unphysical states from the enlarged Hilbert
space, the following constraint needs to be imposed on the
bond-particle Hilbert space:

s's+ tzta =1,

where a=x,y, and z, and we adopt the summation conven-
tion for the repeated indices hereafter unless mentioned oth-
erwise.

Constrained by this equation, the exact expressions for the
spin operators can be written in terms of the bond operators:

1 .
Ska= z(sTta 15— zsaﬂytgty) ,

1 . .
- i T ; T
Sia= 2(—s ta= 1,5 —i8apyt5t,),

where &,4,
with &,,,=1.

Utilizing the bond operator representation of spin
operators, the Heisenberg spin Hamiltonian in Eq. (1) can be
rewritten solely in terms of bond particle operators. Since all
dimers of J,-dimer VBS phase are symmetry equivalent, the
singlet condensate density (s;) and the chemical potential
M can be set to be (s;)=5 and g; = in our mean-field theory.
Here i denotes the location of dimers. The hard-core
constraint on the bond-particle operators is imposed
by adding the following Lagrange multiplier term,
Hﬂz—EiM(§2+t;atia—1). The resulting Hamiltonian can be
written as follows:

is the third-rank totally antisymmetric tensor

H=N€0+HQuad+HQuarticv (21)

where
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J, I3 s
HQuad = (_e - M)E tiTatia + ZTE {tiatja + lialja t H~C-}

4 i )
(22)
and
— ﬁ i i
HQuarTic - 2 Saﬁ’ysa/,wtiﬁtiytjﬂtjv' (23)
469
In the above, N is the number of unit cells and
3
€= 3[ w(l —5°) - Zjes—z] . (24)

The quartic interactions between triplet particles are de-
coupled using the mean- field order parameters P and Q,
where PE(IL%} and Q= (t;,tj,)- Here P and Q denote the
diagonal and off-diagonal triplet correlations between neigh-
boring dimers. These two order parameters P and Q together
with 5 and w are determined self-consistently by solving the
coupled saddle-point equations.*34°

The ground-state energy of J,-dimer VBS phase obtained
from the self-consistent bond operator calculation is dis-
played and compared to the energy of SL[0,0, ] state in
Fig. 17. Here we have obtained the energy of J,-dimer VBS
phase in three different ways. If we neglect the interdimer
couplings (the decoupled dimer limit) completely, the energy
is independent of J,/J,. The inclusion of the interdimer in-
teraction lowers the ground-state energy significantly. In the
end, J,-dimer VBS phase has the lower ground energy than
the SL[0,0,] state over the entire parameter range of
0=J,/J,=1 when we include the quartic interactions. The
interdimer interactions generate huge correction to the
ground-state energy of dimerized phases.

Now we concentrate on the other limit where J,>J,. In
contrast to the J,>J, limit, it is nontrivial to identify the
ground state even when we restrict our attention to valence-
bond solid phases. Taking into account the information from
the exact diagonalization study and 1/N fluctuation from the
large-N limit, we suggest the columnar 18-site VBS phase as
a promising candidate for the ground state as explained
below.

We apply the bond operator approach to the columnar
18-site VBS phase. The nine dimers within the unit cell can
be divided into two groups. One group is made of the six
dimers lying on the triangular links. Note that all these six
dimers are lying on a dodecagon. [See the central dodecagon
in Fig. 11(a).] We call such a dodecagon surrounded by six
dimers as a “perfect” dodecagon. The remaining three dimers
lying on the expanded links make the other group. Every
dimer belonging to the same group is symmetry equivalent
as one can easily notice from the patterns around the central
“perfect” dodecagon in Fig. 11(a). To apply the bond opera-
tor approach we have to introduce two independent sets of
order parameters to distinguish the two different groups of
dimers. We use 5, and w, (5; and w,) to indicate the singlet
condensate density and the chemical potential corresponding
to the expanded (triangular) link. To decouple the quartic
triplet interactions we introduce two sets of the order param-
eters, that is, {P,,,Q,,} and {P,,,Q.,}. P,,(Q,,) describes
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FIG. 18. (Color online) Comparison of the ground-state energies
of the columnar 18-site VBS to that of SL[0,0, 7] state. (a) Ener-
getics for J,>J,. The energies of the columnar 18-site VBS are
obtained in three different ways as in Fig. 17. (b) The relative en-
ergies obtained by subtracting the decoupled dimer energy. Note
that there is a level crossing around J,/J,=~ 2.4 between the energy
of SL[0,0, 7] state and that of the columnar 18-site VBS including
the quartic interaction.

the diagonal (off-diagonal) correlation between the neighbor-
ing dimers lying on a perfect dodecagon. On the other hand
P,,(Q,,) describes the diagonal (off-diagonal) correlation be-
tween a dimer lying on an expanded link and its neighboring
dimer lying on a perfect dodecagon. We have determined the
eight parameters 5,, u, (@=t ore), and Pg, Qg (B=pp or ep)
self-consistently by solving the coupled saddle-point equa-
tions.

The self-consistent solution shows that P,,=Q,,=0, 53
=1, and u,=-3/4J,. Since P,, and Q,, describe the coupling
between the dimers lying on expanded links and the dimers
lying on perfect dodecagons, these two groups of dimers are
completely decoupled when P,,=Q,,=0. In this situation,
every dimer lying on expanded links is decoupled from the
surrounding, leading to Ef,:l and w,=-3/4J,. The triplet
fluctuations are confined inside every isolated perfect
dodecagon, which is reflected in the finite P, and Opp val-
ues. This interesting structure would result in the highly lo-
calized triplet excitation spectrum.

The ground-state energies of the columnar 18-site VBS
and SL[0,0, 7] are compared in Fig. 18. The energies of the
columnar 18-site VBS are obtained in three different ways
again, that is, for the decoupled dimer limit, including the
interdimer coupling neglecting quartic interactions, and fi-
nally including the interdimer quartic interactions. For clarity
we also calculated the energy difference relative to the de-
coupled dimer energy as shown in Fig. 18(b). Interestingly,
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(@) (b)

FIG. 19. (Color online) Two bond ordering patterns transform-
ing as the A, irreducible representation. The thick solid (red) link
has ¢;=1 while the thin solid link has ¢;=0. (a) J,-bond order. (b)
J-bond order.

there is a critical ratio (J,/J,).~2.4 beyond which the co-
lumnar 18-site VBS becomes the ground state when we in-
clude the quartic triplet interactions. Even though the critical
ratio (J,/J,), is a bit larger than the suggested phase bound-
ary from the numerical study,” the existence of the critical
values of (J,/J,). is quite encouraging. In particular, because
the slopes of the lines in Fig. 18(a) are almost parallel, small
additional energy correction could induce a large shift of the
crossing point as shown in Fig. 18(b). Since the simple
Hartree-Fock approximation does not take into account the
fluctuations coming from the cooperative interaction be-
tween the dimers on the expanded links and those on the
perfect dodecagons, we expect that the quantum correction
beyond the Hartree-Fock limit could shift the energy-level
crossing point down to (J,/J,).~1.3 as suggested by the
numerical study.?’

V. INSTABILITY OF SL[0,0,7] SPIN LIQUID AND
VALENCE-BOND SOLIDS

Summarizing the previous discussions, J,-dimer VBS
phase is the ground state for J,/J,<(J,/J,).; while the co-
lumnar 18-site VBS is the ground state in the opposite limit
of J,/J,>(J,/J,) . [Here (J,/J,) = (J,/J,).] Although this
result is obtained based on the energy comparison with
SL[0,0, 7] state, one may still expect that the two valence-
bond solid states are intimately related to the SL[0,0,]
state. In particular, the J,-dimer VBS and the columnar 18-
site VBS may arise as a consequence of the confinement in
the SL[0,0, 7] spin liquid state. In this section we describe
the possible relation between these two valence-bond solid
phases and the SL[0,0, 7] state.

A. Spinon confinement and uniform bond orders

Due to the finite spinon gap, the U(1) gauge field is the
only low-energy excitation in the SL[0,0, ] state in the
long-wavelength limit. Since the compact U(1) gauge theory
without matter field is confining in 2+1 dimension, we ex-
pect that the monopole proliferation would lead the
SL[0,0, 7] Ansatz to some confined phases. To understand
the properties of the confined phases resulting from the
monopole condensation, we have to determine the symmetry
properties of the monopole operators.
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Here we discuss the possibility that the monopole opera-
tors are invariant under all possible symmetry transforma-
tions. The J,-dimer VBS phase, which is the ground state for
J,/J,<1, is invariant under space-group operations. The
bond ordering pattern of the J,-dimer VBS phase belongs to
the trivial A; irreducible representation of the Dy point
group. Therefore if we interpret the J,-dimer VBS phase to
be induced by the confinement transition, which is reason-
able in the limit of J,/J,<< 1, this reflects the fact that mono-
pole operators are invariant under symmetry transformations.

Extending the group theory analysis we performed in Sec.
IIT B, we investigate all possible bond orders invariant under
the space-group operations. These are displayed in Fig. 19.
Here we have finite singlet correlation (¢;# 0) only on the
thick solid (red) links. The bond order in Fig. 19(a) is noth-
ing but the J,-dimer VBS phase. On the other hand, the bond
order in Fig. 19(b) has finite ¢; only on the triangular links
(we call it as a J,-bond ordered phase). We expect the J,-bond
ordered phase is the natural low-energy bond ordering pat-
tern when J,>J,. Since the arbitrary superposition of these
two orders follows the same A, irreducible representation,
we expect the actual ground states would have finite ¢; val-
ues over all the links on the lattice. However, it is natural to
expect that the ¢; on the expanded (triangular) link would be
larger than that on the triangular (expanded) link when
J,>J, (J,<J,). Therefore the bond-ordered phase corre-
sponding to the A, irreducible representation successfully de-
scribes the low-energy manifold over the whole parameter
range of J,/J,. Interestingly, the recent work by Choy and
Kim>? suggested that the same bond ordered states are the
ground states of the same model Hamiltonian in the strong
quantum limit based on the bosonic Sp(N) approach.

Since the spinon band structure of the SL[0,0, 7] state
does not change qualitatively by varying J,/J,, we expect
that the change in J,/J, ratio would not affect the trivial
monopole quantum number. Therefore if the ordered phase is
coming from the confinement transition, it will transform
trivially under the symmetry operations. However, it is also
possible that the instability of the SL[0,0, 7] state is caused
by the interactions between spinons leading to some broken
symmetry phases. We discuss about this possibility in the
following section.

B. Instability induced by interactions between spinons

Here we investigate the instability of the SL[0,0, 7] state
coming from the interactions between spinons and the sym-
metry properties of the resulting ordered phase. Especially
we focus on the instability toward the states with the
V3 X \3-type translational symmetry breaking. As shown in
Fig. 4, the valence band is completely flat without any pre-
ferred momentum. However, the conduction band supports
several dispersion minima. The four minimum points of the
conduction band are given by

(o) s me-m=(3:55)
m;=—-m,=|(—, and my=-m;=(—,—=|.
3 2=\ % 4 =13 23

Interestingly if we double the vectors connecting neighbor-
ing minimum points, they sit on the Brillouin zone corners

PHYSICAL REVIEW B 81, 134418 (2010)

wrhich _are nothing but the momentum corresponding to the
V3 X 3 ordering. Motivated by this observation we study the
symmetry properties of the bound states made of low-energy
fermions near the conduction-band minima.

We introduce the fermion fields W; which describe the
low-energy excitations near the four conduction-band
minima m; (i=1,2,3, and 4),

12

Wilx) ~ 2 e ™ (w)f, (%),

n=1

where v; is the eigenvector of the mean-field Hamiltonian at
the momentum m; and f,, is a slowly varying fermion field
near the conduction-band minimum, with n labeling the 12
sites within the unit cell. To determine the symmetry of
bound states made of the above low-energy fermions, we
have to understand how the symmetries of the microscopic
Hamiltonian are realized in the effective continuum fields,
V.. Here we follow the same procedure which we use to
determine the transformation properties of the continuum
field for the SL[-3,7,0] state in Sec. I B. To extract the
necessary information on the transformations of the con-
tinuum field, we consider a finite system of a 6 X 12 unit
cell. By solving the mean-field Hamiltonian on this finite
system, we determine the properties of the eigenvectors at
the four momentum points, m;. The detailed explanation of
the procedure as to how to determine the symmetry of the
continuum fields is discussed in Appendix B.

Through the projective symmetry-group analysis, we de-
termine the following transformation properties of the con-
tinuum fields:

v, 0 ™ 0 0\ [V,
- v, 1 0 0 0| v,
“lw, | 7lo o o 1]lw, |
v, 0 0 ™ o)\,
v, AR | 0 0 v,
v, 0 £ 0 0 v,
T,: — : ,
“'| v, 0 0 €™ 0 v,
v, 0 0 0 O\,
-1 el(ﬂ'/3)
- 0 0
\/E \'E
,\1,1 _ e—i(ﬂT/'i) 1
’r'_ T O 0
e \Ifz . . L_ _ ei(ﬂT/S)
v, V2 V2
_ e—i(ﬂ/3) _
0 0 -
\E V2
v,
7
x| 3.
v,
vy
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-1 i(7/3)
0 0 -
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P —ie —i(7/3) i
1 0 _ -
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Cﬂ'/3: \Pz - —i i(7/3)
- 0 0
v, V2 V2
—(im/3) -1
= - 0 0
V2 V2
v,
L4
% 3
¥,
v,

We first investigate the symmetry of all possible fermion
bilinears which can be written as ‘I’TM ;. For the descrip-
tion of the 4 X4 unitary matrix M;; we 1ntroduce two sets of
the Pauli matrices 7; and ;. Here 7; is acting on the space
spanned by either (¥, ¥3) or (¥,,V¥,). On the other hand
w; is defined in the space spanned by (W, V,) or (W5,WV,).
Among the 16 possible bilinears, there are only two terms
which can form a basis of the enlarged point group Gp,.
These are W i 30 and \I’ TotoW; which transform as the
A, and A, 1rredu01b1e representatlon of the enlarged point
group Gp,, respectively. However, since these two bilinears
have zero total momentum, they cannot describe the
V3 X \3- -type symmetry breaking. The net momentums car-
ried by the other 14 bilinears are neither zero nor
K= ( ,0). Therefore the transformation properties of them
are not compatible with the symmetry of the V3 X3- -type
enlarged unit cell.

Next we consider the instability in the particle-particle
channels. Defining the pairing amplitude as A;=WV¥;, we
have 16 different A;;. We first omit the indices for the spin
degrees of freedom and study how they transform under the
space-group symmetry operations. It can easily be checked
that the 16 pairing amplitudes are divided into the four dif-
ferent sets II;, I1,, Q;, and €, which transform indepen-
dently. The six-component vectors II; and the two-
component vectors (); are given by

g—i(7'r/3)A11 +ei(7r/3)A23
e—i(w/3)A“ _ ei(ﬂ'/S)A%
A+ Ay
e—i(w/B)A22+ ei(w/3)A44 ’
e—i(ﬂr/S)Azz _ ei(v'r/3)A44

Ay + Ay

e—i(w/3)Al2 + ei(‘n’/3)A34
e—i(Tr/S)Al2 _ ei(w/3)A34
A14 - A32
e—i(7/3)A21 + ei(7T/3)A43
e TTIN, — TN,

A41 - A23
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Q= (Aw— Ay )’ Q,= (A14+ A32>.
Apy—Ayp Ay + Ay

Under a space-group symmetry operation S, they transform
in the following way:

I, — Ag(IT)II; and Q; — Bs(Q)Q,,
where Ag(I1,) [Bs(€);)] is the 6 X 6 (2X2) matrix represent-
ing the symmetry operation S, whose detailed expressions
are displayed in Appendix C.

Since the pairing amplitude A;; is not a gauge invariant
object, we have to look into the symmetry of the bilinears
such as D;; k,—A A Even though the number of all pos-
sible tensors D;; 4, is very large, we can reduce the complex-
ity of the symmetry analysis by focusing on the objects car-
rying the momentum compatible with the V3x13 ordering.
This idea leads us to exclude D;;;; made of the basis II, and
),. In addition, II; and €}, have opposite spin parities, that
is, I1; is spin singlet while ), is spin triplet. Therefore all we
have to consider are the terms like HTMHH | and Q'[Mnﬂl.

First, we define a set of Pauli matrices 7; acting on the
space spanned by (). Using the transformation properties of
Q, under the space group, we obtain a pair
(Q L), ,Ql 7,{);) which has the momentum K= (& B 7 .0) and
transforms as the FEj; irreducible representation of the en-
larged point group, Gpp,.

To understand the symmetry of HIMHHI, we introduce a
set of the Gell-Mann matrices \, (a= ,8) (Ref. 53) as
well as the Pauli matrices 7;. For convenience, we also define
the matrix, No=12I5, where I is the 3 X3 identity matrix.
The Gell-Mann matrices are acting on the space spanned by
either (I1; ;, IT; 5, IT; 5) or (I, 4, I, 5, IT; ¢) and 7; connects
these two three-component vectors. Here II; , indicates the
nth component of IT;.

We have examined the symmetry of all possible bilinears
I iMplI; and found out that there are only two sets of bilin-
ears which have the momentum K' compatible with the

V3X43 ordering. These are given by

2\'2 1
_HITI)\SHI + SHITI)\QHI

3 2\r 1
_H Tz)\ Hl + - H Tz)\ng

HITl)le
[

- 202
S NI, — TH171)\9H1

3
HTT2)\3H]
1 27 b
H]Tz)\ Hl H]Tz)\gnl
3 3
In the above XE transforms as the two-dimensional E;
irreducible representation of the enlarged point group Gpp.
On the other hand X, constitutes a basis of the four-
dimensional Q irreducible representation. Therefore the in-
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stablhty given by XE has the symmetry consistent with the
V3 %3 orders Wthh we have discussed in detail in previous
sections.

Since we are considering an instability from a gapped
phase, to stabilize the resulting ordered state, the condensa-
tion energy should be larger than the excitation gap. How-
ever, because the magnitude of the energy gap reduces as
J,/J, increases, the instability can occur beyond the critical
value of J,/J,. Finally, since the condition of (Xz,) # 0 does
not constrain the magnitude of (I1,), (I,) can have both zero
and nonzero values. If (I1;)# 0 with <X53> #0, we have Z,
spin liquid supporting fractionalized quasiparticles and
breaking the translational symmetry at the same time. This
state is similar to the Amperean paired state,>* which is re-
cently suggested as a possible ground state of the organic
compound «-(BEDT-TTF),Cu,(CN);. On the other hand, if
(I1,)=0 while (XE »# 0, we have more conventional phase
transforming as an Eg irreducible representation.

In conclusion, the symmetry analysis of the low-energy
fermions near the conduction-band minima shows that the
instability of the SL[0,0, ] state from the particle-particle
channel supports valence-bond solid phases, which have the

V3% 3 unit cell transforming as E; irreducible representa-
tions of the enlarged point group Gpy. Remember that the
J,-dimer VBS phase is induced via the monopole condensa-
tion from the SL[0,0, ] state for small J,/J, limit. There-
fore we can obtain the valence-bond solid ground states both
for J,/J,<1 and J,/J,>1 limits from the instability of the
SL[0,0, 7] state.

C. Projected wave-function approach

We next assess the stability of the SL[0,0, 7] spin liquid
toward columnar dimer order in the Guzwiller projected
state. In order to do this, we include a parameter ot in the
mean-field Hamiltonian which corresponds to strengthening
the fermion hopping on those bonds which dimerize in the
classical columnar dimer state, shown in Fig. 11(a), and
Gutzwiller project the resulting state. Clearly, if 6> 1, the
resulting wave function will be precisely the classical colum-
nar dimer pattern. The energy change in the weakly distorted
state as a function of the distortion parameter ot serves as a
measure of the inverse susceptibility of the SL[0,0, 7] state
toward columnar dimer order. As seen from Fig. 20, the
SL[0,0, ] state is stable, with a positive inverse suscepti-
bility, for J,/J,=<?2, but is unstable, with a negative inverse
susceptibility for J,/J, = 2. Further, the optimal ot appears to
increase continuously for J,/J,=2. This suggests that the
SL[0,0, 7] state possibl J undergoes a continuous transition
into a state with V3X\3 columnar dimer order at
J,/J,~2.0. We discuss the phase transition more carefully in
the next section.

VI. PHASE TRANSITION BETWEEN VBS PHASES

The results in previous sections show that there is a phase
transition between the J,-dimer VBS phase and the columnar
18-site VBS phase with increasing J,/J,. To describe the
phase transition between these two VBS phases, we con-
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FIG. 20. Change in energy of the Gutzwiller projected
SL[0,0, 7] spin liquid state upon including a distortion & corre-
sponding to increased fermion hopping amplitude on the dimerized
bonds of the 3 X \3 columnar dimer state shown in Fig. 11(a). For
J,1J,=1.9,2.0, the SL[0,0, 7] state is found to be stable against this
distortion, while it is seen to be unstable for J,/J,=2.1,2.2. (This
calculation was carried out on a system with 12X 12 unit cells, i.e.,
with 864 spins. The statistical errors on the computed energy are of
the order of the symbol size.)
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FIG. 21. (Color online) Triplet dispersions of valence-bond solid
ground states along high-symmetry directions of the Brillouin zone.
The dispersions are obtained from the self-consistent bond operator
mean-field theory. (a) Triplet dispersion of the J,-dimer VBS phase
for J,/J,=1. (b) Triplet dispersion of the columnar 18-site VBS
phase for J,/J,=3.

struct a Landau-Ginzburg free energy introducing a two-
component vector (®,,®P,), which transforms as an E; irre-
ducible representation of the enlarged point group Gpy,.
Since the VBS phases are time-reversal invariant, we can use
two real numbers, ®; and ®,. The Landau-Ginzburg free
energy can be written using all possible invariants made of
®, and ®,. In particular, it is important to note that there is
a third-order invariant, which belongs to the A; irreducible
representation of the following decomposition:

E3®E3®E3=A1@Bl®3E3. (25)

In terms of @, and ®,, the third-order invariant is given by
D,(3d7-P3). Straightforward extension of the same group
theoretical analysis to quartic order shows that there is only
one quartic invariant of (<D%+<D§)2. Collecting all invariants
up to quartic order, the Landau-Ginzburg free-energy density
is written as

f=a(®@] + D)) + \O,(3D] - D3) + u(d] + D3). (26)
For convenience we define a complex variable ® as follows:
O =D, -ib, =D, (27)

Then the free-energy density is given by
f=a|® +ul®|* = \|P|*cos(36). (28)

Given u>0 and A >0, the above mean-field free energy pre-
dicts two different phases separated by a first-order transition
point at a=a,=\?/(4u). For a> a,, we have a disordered
phase with |[®|=0. On the other hand, ordered phases with
|®|#0 and =" (n=0,1,2) appear when @<a,. The
three ordered states describe the threefold degenerate VBS
phases with \3 X \3 pattern.

Considering slow spatial variation in @, the Euclidean
Landau-Ginzburg effective action is given by
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S= f &’x{|9, D) + a|D[* + u|®|* - \|D[*cos(36)}.
(29)

The above effective action is nothing but the action for the
three-dimensional Z;-clock model. Previous Monte Carlo
simulations suggest that the phase transition associated with
the Z; symmetry breaking is weakly first order.?>7 The
wave-function numerics in the previous section, however, are
not inconsistent with this scenario considering the small sys-
tem size. In addition, the nature of the transition may not
have been completely settled.’®

VII. TRIPLON DISPERSION IN THE VBS STATES

In Fig. 21, we plot the triplet dispersions of the two VBS
phases, which are obtained from the bond operator mean-
field theory. The triplet dispersion of the J,-dimer VBS state
is shown in Fig. 21(a). Since the unit cell of the J,-dimer
VBS state is composed of three dimers, we have three triplet
modes in the spectrum. Here we neglect the fact that each
triplet particle has three components (x, y, and z) when we
count the number of bands. Interestingly, the lowest band is
flat and touches another dispersive band at the Brillouin-zone
center. The emergence of this band touching has a topologi-
cal origin.?’>° The flatband reflects the existence of localized
eigenstates. In fact, there are two different types of localized
eigenstates. The first set is given by states which are confined
within dodecagons. Each dodecagon supports a single local-
ized eigenstate. In addition, there are ‘“noncontractible” loop
states constituting the second group of localized eigenstates.
In contrast to the states confined within dodecagons, these
loop states extend over the whole lattice system one dimen-
sionally. The topological characteristics of these loop states
can be easily understood using the periodic boundary condi-
tion, under which a two-dimensional system has a torus ge-
ometry. In this situation, there are two independent loop
states winding the torus once. Since these states cannot be
shrunk to points, they are noncontractible. Counting the
number of independent localized states carefully, we see that
the number of degenerate localized eigenstates is larger than
the number of dimers on the lattice.3”-> It means that a single
flatband is not enough to support all independent localized
eigenstates. Therefore additional degrees of freedom must be
provided by another band, leading to the band touching.

The triplet dispersion of the columnar 18-site VBS state is
displayed in Fig. 21(b). We have nine triplet bands which are
all flat within our mean-field approach. The degeneracies of
the flatbands are given by 3, 1, 2, 2, and 1 counting from the
bottom to the top bands. In contrast to the case of the
J,-dimer VBS phase, the flat structure emerges simply be-
cause the dimers on expanded links are completely decou-
pled from those on neighboring perfect dodecagons. The
lowest flatband is triply degenerate, which comes from the
three dimers on expanded links. The remaining six dimers of
the unit cell lying on perfect dodecagons constitute the other
six bands with higher energies. Therefore we expect that the
nature of the valence-bond solid ground states can be dem-
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onstrated via neutron-scattering experiments measuring trip-
let dispersion spectra.

VIII. DISCUSSION

In summary, we have shown that the ground state of the
nearest-neighbor Heisenberg model on the star lattice under-
goes a phase transition from “the J,-dimer VBS phase”
which respects all lattice symmetries to “the columnar 18-
site VBS phase” which exhibits y3 X y3 order with increas-
ing J,/J,. From the Landau-Ginzburg analysis, this appears
to be a conventional quantum phase transition which is de-
scribed as the thermal transition of the 2+ 1-dimensional
Z3-clock model.

If S=1/2 variants of the organic Iron-Acetate magnet can
be synthesized, they would be particularly good candidates
to study the phase diagram discussed in this paper since it
may be possible to pressure tune the ratio J,/J, significantly
in such systems. Both VBS states obtained here would ex-
hibit a spin gap in uniform susceptibility measurements. We
expect a direct signature of the 18-site VBS order to appear
in x-ray scattering or neutron diffraction studies which would
see a change in the crystal periodicity. Ignoring coupling to
phonons, the 18-site VBS state should exhibit a thermal tran-
sition in the universality class of the Zs-clock model in
D=2 dimensions. In addition, the two VBS phases exhibit
quite distinct behaviors in their triplet excitation spectra as
discussed above which could be tested using inelastic
neutron-scattering experiments.
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APPENDIX A: DERIVATION OF THE LOW-ENERGY
EFFECTIVE HAMILTONIANS

Here we present the details of how we have derived the
low-energy effective Hamiltonians of the spin liquid states
discussed in Sec. II B.

1. Effective Hamiltonian for SL[7,7, ]

For the gauge choice depicted in Fig. 5(a), the mean-field
Hamiltonian corresponding to the SL[ 7,7, 7] can be written
in momentum space as

Hyp==J )2 2 fiwHK) pnfrons (A1)

k mn

in which
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0 i i N5 O O
-i 0 -i 0 XN O

i i 0 0 0 g

H(k) = : B
)\Zz 0 O O -0 -1
0O N 0 i 0 =—i
0 0 Ny @ i O
where z;=e®¥ and z,=¢*%. m, n are indices for

the six sites inside a unit cell and A=J,x,/J,x,. The indices
for the spin quantum number are dropped for simplicity.
Here we define the Fourier transformation via
fra= %ﬁtzkelk'kfk,w

As described in Fig. 6(b), the conduction (valence) band
shows the dispersion minimum (maximum) at the momen-
tum *Q. The energy eigenvalues of H(k) at k=*+Q are
given by

Ef =\3/24+\2= 129+ 12)2,

Ey =-E, (A2)

where * indicates the two momentum position =Q and 1
and 2 represent the conduction (1) and valence (2) bands,
respectively. To make the analytic treatment of the problem
possible we focus on the small N limit. Note that the
overall spinon band structure does not change upon varying
N. Expanding the energy eigenvalues in powers of A\,
we get

-+ =+ 1
E =-E, = —§x2+ O\,

I
/

N

The corresponding eigenvectors are

nr_ "™ 1o 1o Lo
()= ) 1= N T N T+ 20

V3(1 +b?) 3 3
_ #)\ei(ﬁ/:;)’_ #)\’ #)\eiuwﬂ) ,
V3 V3 W3
i(7/6)
(V;)T: e 1 - #)\e_i(”m,i/—)\,— %)\e—i(zwn)’l
V3(1+0°) | V3 V3 V3
1 1 1
+ A= 1--A% 1+ N2,
3 3 3
—i(27/3)
e 1 . 1 1 . 1
(V_)T= _)\6‘1(77/3),— _)\,_)\6‘1(27#3),1 + _)\2’
! V3(1 +b%) \E \E \E 3

1 1
—1==N% 1+ =N\,
3 3
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i(27/3) 1 1
(VE)T_ ¢ _{— 1-=N\-1- g)\z,l

C\3(1+ 67 3
1 1 . 1 1 :
+ _)\2’ ?)\6_(”7/3), _/_)\’_ ?)\6_1(277/3) , (AS)
343 V3 \V3
where the superscript 7 means taking transposition.
The above eigenvalues and eigenvectors satisfy

H(=Q)v, =E, v, (a=1 and 2) correctly up to the third or-
der in A.

Now we want to construct the effective Hamiltonian de-
scribing the states which have small momentum deviation
from *=Q, ie., states with k=*Q+q. We first define
AH(q)=H(*Q+q)-H(*Q). Keeping terms which are first
order in q and projecting them into the low-energy space
spanned by the eigenvectors v, (@=1,2), we obtain the fol-
lowing effective Hamiltonian:

. A \?
H>(q)=H(*Q+q)=- —E(qﬂﬁ q,7)) + B
V \

Finally, defining the continuum fermion fields using the
spinon variables as

6 6
[lﬂt(Q)]T -~ [2 (Vi:):ftQ+q,n72 (Vzi):ftQ+q,n]’
n=1 n=1

(V)] ={[y. (@] .[v (@]},

we arrive at the low-energy effective Hamiltonian written in
Eq. (14) which is nothing but the Hamiltonian for the mas-
sive Dirac particles.

(A4)

2. Effective Hamiltonian for SL[-73,7,0]

The low-energy Hamiltonian corresponding to the
SL[-7,7,0] can be obtained following the similar steps
used to construct the massive Dirac Hamiltonian of the
SL[7,7,]. Adopting the flux configuration depicted in Fig.
5(b), we have an electron pocket centered at the momentum
K and an hole pocket centered at the momentum -K. At
each momentum =K there is a linear band touching as is
shown in Fig. 5(b). The energy eigenvalues of the degenerate
states at k= =K are given by

. V3+A2- V/g

1
5 ~ =N+ 0N,

/

AY

1
E =—E"=-—=\+00\Y,
V3
where E* (E™) represents the degenerate energy eigenvalue at

the momentum K (-K). We choose the corresponding eigen-
vectors in the following way:

()7 = el _ i/_)\e—i(Zn-B) _ ir)\ Lr)\ei(Zﬂ'B) -1
V3(1+6%) | V3 V33

1 1 1
— =N —1-==N% 14 —A2¢,
3 3 3
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()=

ﬂ 1 l)\Z 1 l)\21+l)\2
V3(1 + %) 37 37 3

1 ) 1 1 )
_ _/—)\61(277/3),— ?)\,?)\6_1(27#3) ,
V3 V3 N3

A Y NS UR PP
v =T 5 )~ 1=2JA,—1=7 )
‘ 3 3

V3(1 + %)
+ l)\z’%)\e—i(zwﬂ),i/_)\,_ L/_)\ei(Zﬂ/?)) ,
343 V3 3

i(7/6)

e 1. 1 1 )

(V_)T= _)\61(277/3)’ ?)\’_ _7\€_l(27ﬁ3),— 1
T Ba+ |3 v 3
1 1 1
- 5)@,— 1- 5)@,1 - 5)&}, (AS)

satisfying H(=K)v, =E*v, (a=1 and 2) correctly up to the
third order in A. The first-order perturbation theory combined
with the projection into the low-energy space spanned by v,
(a=1, 2) leads to the following Hamiltonian:

. \ \?
H™(q) =H(*K+q)=~ Tg(qxfx +ay7y) + N
N \

Using the continuum fermion field defined in Eq. (A4) we
obtain the low-energy effective Hamiltonian displayed in Eq.
(15).

3. Effective Hamiltonian for SL [0,0,0]

The mean-field band structure of the SL [0,0,0] has a flat-
band lying at the Fermi energy, which is touching a disper-
sive band at the zone center, i.e., at the momentum I
=(0,0). To describe the low-energy states near the I' point,
we use the degenerate perturbation theory again. However,
since the two bands touch quadratically, we keep the pertur-
bation expansion up to the quadratic order in momentum.
For the SL [0,0,0], the mean-field Hamiltonian is given by

HMF == JtXtE E f]i,'1zH(k)m,nfk,n ’ (A6)
k m,n
in which
0 1 1 X 0 O
1 0 1 0O N O
1 0 0 0 M\
H(K) = “
ANz, 0 O 0o 1 1
0O N O 1 0 1
0 0 N 1T 1 0

We divide H(K) into two pieces such that H(k)=H,+V in
which H,= H(k=0). Diagonalization of H, gives the eigen-
values Ey={-1-\,—1-N,=14+\,—1+X\,2=N\,2+\}. Note
that there are two pairs of doubly degenerate eigenvalues.
Here we focus on one of the degenerate eigenvalues
wo=—1+N\ which is lying at the Fermi level. We choose the
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following two degenerate eigenvectors corresponding to wy:

1
(v)'= ?{2,— 1,-1,2,-1,- 1},
AY

1
(VZ)Tz ’/Z{Oal9_ 1’0’13_ 1}
AY

Now we introduce the projection operator 130 (ﬁl) which
projects states into (out of) the low-energy space spanned by

v, and v,. That is, Py= v - v+ v, v} and P,=1-P,. We also
define Vy=PyVP, and V,=V-V,. Then H(k)=Hy+Vy+V,.
The projected Hamiltonian is given by®

Hp (k) = PoH(K)Py = Po[Hy + Vo] P,

N ~ 1 N n
+ PoVPy P\V\Py,
wo—Hj

(A7)

which is valid up to the quadratic order in k. The resulting
Hamiltonian can be written as

N[k —kk
Hp (k)=-—— " V)
(k) 2)\—3<—kxky K

We define the continuum fields as

6 6
(WR)) ~ {2 (D)fi 2 (0 fiad- (A8)
n=1 n=1
Finally, combining the above results we obtain the follow-
ing low-energy effective Hamiltonian:

1 d’k
Heyp=— f 2 )zwf(k)heff(k)w(k),
Mg m

in which

heff(k) = (k)zc + k}z) To— (kyzc - ki) T~ 2kxky7-x~

APPENDIX B: SYMMETRY AND CONTINUUM FIELD OF
THE SL[-7,3,0] state

In this section we show how the continuum fields of the
SL[—’Z—T,%T,O] state transform under the microscopic symme-
tries of the lattice. Here we follow the procedures suggested
by Hermele et al. in Ref. 10. To obtain the necessary infor-
mation we consider a finite system with periodic boundary
conditions in both a; and a, directions. In particular, to de-
termine how the wave functions at the momentum *K (we
call it as the nodal wave functions) transform under the
space-group symmetries of the Ansatz, we consider the
3 X3 lattice system, that is, the system is periodic under the
translation by 3a, and 3a,. Since a unit cell (indexed by a
vector R) contains six sites labeled by n, the finite system
consists of 54 sites. The nine points within the Brillouin zone
of the finite system contain the nodal points =K and respect
all the point-group symmetries of the Ansatz.

Using the eigenvectors 1% (a=+,— and @=1,2) in Eq.
(A5), the nodal wave function is given by
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iaK-R¢_a
®, (Ron) = %

Then the continuum field is written as
Voa(q=0)= 2 @ (R,n)fr,-
R.n

Now we consider a symmetry operation S under which
the spinons transform as

S:fi’g' - GS(i)fS(i),U"

In particular we consider the following symmetry opera-
tions:
(i) The a, translation (7));

Ty:frno — Gr, (R fRia, o
(i) The a, translation (75);
To:frne — Gr,(Ri)fRiayno
(iii) The 2{ rotation (C,,/3);
Cormiifrne — G, [R)fe,  ®n).o-
(iv) The y reflection (R,);
Ry fyyne = GRy(R,n)f (tmy) im0

where R=(x,y) and
€{(1,4),(2,6),(3,5),(4,1),(5,3),(6,2)}.
(v) Time-reversal and inversion (7-1);

(n,m)

T- I:fR,n,a' e (ia-Z)O',o"f—R,(n+3),0" s

in which (n+3) represents the remainder when it is divided
by six.
(vi) Charge conjugation (C*);

. il
C*'fR,n,o’ - erlfR,n,o”

in which =1 for i=1,2,3 and —1 otherwise.
For each of the symmetry operation S, the matrix repre-
sentation of the symmetry S is defined as

(8)siy,i = Gs(i).

The action of the symmetry operation S on the nodal
wave function is given by S®,=c_,,P,. Now a and b denote
the nodal and the two-component Dirac indices collectively.
Finally, the transformation of the nodal wave function re-
flects the action of S on the continuum field such as

SV, —c, V.

The transformation rule of the continuum field under all
the above symmetry operations is summarized in Eq. (16).

APPENDIX C: EXPRESSIONS OF THE MATRICES A (I1,)
AND By(£2)

Here we present the expressions of the matrices Ag(I1;)
and Bg(Q),) (S :T‘ﬁ’ Ta2, Ry, and C.;3), which are defined in
Sec. V B. At first Ag(Il,) are given by
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e 0 0 0 0
0 ™ 0 0 0 0
Ay (IL): 0 0 i '0 0 0
ay 0 0 0 9 o I
0 0 0 0 &™) 0
0 0 0 0 0 ™
™0 0 0 0 0
0 ™ 0 0 0 0
0 0 ™ o 0 0
A ALl 0 ™ g o |
0 0 0 0 ™ 0
0 0 0 0 0 0™
1000 0 0
0010 0 O
A, (L) 0100 0 0 ’
y 0001 0 0
0000 0 -1
0000 -1 0
0 00001
0 00100
0 000 i O
Ac, W6 6 1 0 0 0
-100000
0 i 0000
[
Similarly for A(I1,), 0 0 10 0 O
0-100 0 0
o PR
01 0 0 0 0
6 0 -1 0 0 0 0 0 00 -10
Az, (IL): 0 o 1o o | 00 01 0 0
0 0 0 1.0 0000 i 0
0.0 0 0 0-1 00000 i
Ao (IL: 000100
/3 0i 0000
-1 0 0 0 0 0 00000
0 -10 0 0 0 100000
0 01 0 0 0
ATHZ(Hz)i 0 0 0-10 o0l In the case of Bg({,),
i(2m/3) i-(2m/3)
o 000 0 N Y N Ay
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-1 0 0 —i
BR),(QI):(O _1), BcM(Ql)i(l. O>'

Similarly for Bg(€,),
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10 10
BT01(92)1<0 1>’ BTﬂz(QZ):(O 1),

10 01
BR),(QZ):<0 1)» BcM(Qz)i(l O>'
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